算法题(9)
版权声明 本站原创文章 由 萌叔 发表
转载请注明 萌叔 | https://vearne.cc
问题描述
如下图所示,从矩阵(m*n)的(0, 0)出发,然后只能向下、向右,到达矩阵的对角(m-1, n-1)
求从(0,0)到(m-1, n-1) 一共有多少种走法
解题思路
解决这个问题,我们可以参考动态规划的思想
要到达(m-1, n-1), 就必须到达(m-2, n-1)或者(m-1, n-2)
从(m-2, n-1)到(m-1, n-1) 只有一种走法
从(m-1, n-2)到(m-1, n-1) 只有一种走法
那么从(0, 0)到(m-1, n-1)的走法数量
f(m-1, n-1) = f(m-2, n-1) + f(m-1, n-2)
递归算法
采用递归算法可以很容易写出代码
def try_walk(m, n):
if m == 1 and n == 1:
return 0
return walk(m -1, n -1)
def walk(x, y):
if x == 0 and y == 0:
return 1
res = 0
if x - 1 >= 0:
res += walk(x - 1, y)
if y - 1 >= 0:
res += walk(x, y - 1)
return res
if __name__ == '__main__':
print (1,1), try_walk(1, 1)
print (1,2), try_walk(1, 2)
print (2,2), try_walk(2, 2)
print (2,3), try_walk(2, 3)
print (3,3), try_walk(3, 3)
参考动态规划的思想,可以记录cache (x,y)到(0,0) 走法的数量,加快速度
def try_walk(m, n):
if m == 1 and n == 1:
return 0
matrix = []
for i in range(m):
a = []
for j in range(n):
a.append(-1)
matrix.append(a)
return walk(m -1, n -1, matrix)
def walk(x, y, matrix):
if x == 0 and y == 0:
return 0
# print(x, y)
if matrix[x][y] != -1:
return matrix[x][y]
res = 0
if x - 1 >= 0:
res += walk(x - 1, y, matrix)
if y - 1 >= 0:
res += walk(x, y - 1, matrix)
return res
if __name__ == '__main__':
print (1,1), try_walk(1, 1)
print (1,2), try_walk(1, 2)
print (2,2), try_walk(2, 2)
print (2,3), try_walk(2, 3)
print (3,3), try_walk(3, 3)
非递归算法
由于要计算出f(x, y),必须先算出计算出f(x -1, y) 和f(x, y – 1)
(x – 1, y) 在 (x, y) 的上边, (x, y – 1) 在 (x, y) 的左边
因此只需要按矩阵,逐行, 每行中再逐列计算即可
def try_walk(m, n):
if m == 1 and n == 1:
return 0
matrix = []
for i in range(m):
a = []
for j in range(n):
a.append(0)
matrix.append(a)
matrix[0][0] = 1
for i in range(m):
for j in range(n):
if i - 1 >= 0:
matrix[i][j] += matrix[i-1][j]
if j - 1 >= 0:
matrix[i][j] += matrix[i][j - 1]
return matrix[m-1][n-1]
if __name__ == '__main__':
print (1,1), try_walk(1, 1)
print (1,2), try_walk(1, 2)
print (2,2), try_walk(2, 2)
print (2,3), try_walk(2, 3)
print (3,3), try_walk(3, 3)